. - Page 2
Trang 2 trên 624 FirstFirst 1234 CuốiCuối
Results 11 to 20 of 33

Thread: .

  1. #11

    Quote Originally Posted by ;
    Tôi đang giải trí ý tưởng để tạo ra một tùy chọn trong mã mql một cách giả tạo để có được sự biến động ngụ ý như một đầu ra.
    Điều này là không cần thiết! Chỉ cần sử dụng ATR và
    https://sixfigureinvesting.com/2014/...-root-of-time/. Điều tương tự. Nhưng dễ dàng hơn nhiều để tính toán và mở rộng quy mô lên xuống cho bất kỳ khung thời gian nào. Trong mql4 sử dụng các chức năng này:
    https://docs.mql4.com/indiors/iatr
    https://docs.mql4.com/math/mathsqrt

  2. #12

    Quote Originally Posted by ;
    Xin chào mọi người, Làm thế nào để các nhà môi giới tùy chọn nhị phân forex tính giá trị của các tùy chọn nhị phân (đặt và gọi)? Lưu ý: Tùy chọn nhị phân FX là một SCAM tổng, tôi chỉ quan tâm đến tính toán. Cảm ơn
    Black-Scholes rất có thể được sử dụng, hoặc một số hình thức của nó.
    Quote Originally Posted by ;
    Tôi đang giải trí ý tưởng để tạo ra một tùy chọn trong mã mql một cách giả tạo để có được sự biến động ngụ ý như một đầu ra.
    Tôi đã cố gắng làm điều này trong nhiều tháng, nhưng trừ khi bạn có một thị trường đấu giá thực sự diễn ra, bạn sẽ luôn phải cắm vào biến động lịch sử để có được giá tùy chọn. Biến động tiềm ẩn được tìm ra bằng cách giải quyết lại mô hình Black-Scholes dựa trên giá thị trường tùy chọn, chứ không phải biến động lịch sử.
    Quote Originally Posted by ;
    {quote} Đó chính xác là lý do tại sao tôi muốn có ngoại hình .. Tôi nghĩ nó có thể giống nhau. Cảm ơn vì đầu vào của bạn. Bạn có thể tiết kiệm cho tôi rất nhiều thời gian.
    Tôi cũng không nghĩ ATR là một so sánh công bằng với biến động ngụ ý. Chủ yếu là do biến động tiềm ẩn hầu như luôn bị cường điệu hóa bởi thị trường (mọi người nghĩ rằng cơ bản sẽ di chuyển nhiều hơn so với thực tế. Nếu bạn nghiên cứu ATR hoặc biến động lịch sử của các cặp giá và cổ phiếu FX, thì hầu như luôn luôn bị đánh giá thấp khi đưa ra xác suất liên quan đến biến động giá trong tương lai. P.S. Khi tôi nói quá, tôi có nghĩa là giá nằm trong một sigma hơn 68% thời gian. Trong ví dụ về lựa chọn cổ phiếu, giá thường nằm trong một sigma 83% thời gian thay vì 68%. Điều này là do Độ lệch chuẩn do IV đưa ra là quá cường điệu. Và khi tôi nói không đúng, tôi có nghĩa là giá nằm ngoài một sigma hơn 68%.

  3. #13
    Tôi không chắc chắn về các cửa hàng xô ngoài khơi, nhưng nhị phân Nadex và Cantor Exchange về cơ bản là Delta của một tùy chọn cuộc gọi. Với Nadex, nó chuyển sang Theta thuần trong 5 phút cuối. Biến động tiềm ẩn là phần khó khăn với Nadex vì nó dựa trên thang trượt mà tôi chưa đóng đinh. MQL4 không có chức năng Phân phối Bình thường, vì vậy bạn sẽ phải tự viết hoặc sử dụng thư viện C. Cái tôi đang sử dụng đã ngừng hoạt động vào năm ngoái trên một trong những bản cập nhật mt4 và tôi đã từ bỏ dự án.

  4. #14

    Quote Originally Posted by ;
    {quote} Ha .. không có gì nhiều để tính toán. Đó chỉ là cách đặt cược 50/50 đơn giản với RRlt; 1. Tùy chọn nhị phân không phải là lựa chọn thực tế. Tùy chọn nhị phân dựa trên giả định rằng hành động giá chủ yếu là đi bộ ngẫu nhiên. Bạn có khoảng thời gian cố định sau đó tùy chọn phải hết hạn bằng tiền. Ví dụ: giả sử bạn đặt tùy chọn cuộc gọi 100 đô la, 60 giây với khoản thanh toán 80% ở mức 1.2050 và với thời gian mua 10:00 và thời gian hết hạn 10:01. Nếu lúc 10:01 thị trường trên 1.2050 thì bạn thắng $ 80. Nếu giá dưới 1.2050 thì bạn sẽ mất giá ...
    Nadex và Cantor làm việc khác nhau một chút. Tương tự như các tệp nhị phân trên CBOE và CBOT. Cùng 100 đô la trở lên cho các lần lấy nhưng bạn có thể ở một trong hai bên để nhận khoản thanh toán lớn hơn 1: 1 trên OTM hoặc xác suất âm r: r trên các tùy chọn ITM cao hơn.

  5. #15

    Quote Originally Posted by ;
    {quote} Điều này là không cần thiết! Chỉ cần sử dụng ATR và
    https://sixfigureinvesting.com/2014/...-root-of-time/. Điều tương tự. Nhưng dễ dàng hơn nhiều để tính toán và mở rộng quy mô lên xuống cho bất kỳ khung thời gian nào. Trong mql4 sử dụng các chức năng này:
    https://docs.mql4.com/indiors/iatr
    https://docs.mql4.com/math/mathsqrt
    ATR * Sqrt (Thời gian) là sai. Tôi đã thử nó từ lâu. ATR đưa ra các giá trị cao nhân tạo .. Cách chính xác là (MathLog (ĐóngĐóng [1]) * Sqrt (Thời gian)) * ZScore Kết quả rất thực tế khi hiển thị ranh giới sai lệch có thể .....

  6. #16

    Quote Originally Posted by ;
    {quote} ATR * Sqrt (Thời gian) là sai. Tôi đã thử nó từ lâu. ATR đưa ra các giá trị cao nhân tạo .. Cách chính xác là (MathLog (ĐóngĐóng [1]) * Sqrt (Thời gian)) * ZScore Kết quả rất thực tế khi hiển thị ranh giới sai lệch có thể .....
    Đó là điều thú vị mà bạn đề cập đến ATR mang lại giá trị cao giả tạo. Bạn có thể vui lòng giải thích thêm? Mỗi lần tôi đo lường mức độ biến động bằng cách sử dụng bất kỳ loại lịch sử nào, sự biến động hầu như luôn luôn được đánh giá thấp hầu hết thời gian hoặc đưa ra các giá trị thấp được đánh giá thấp. Có thể tôi đã hiểu nhầm những gì bạn nói, nhưng tôi rất tò mò muốn xem nơi bạn tìm thấy sự biến động thường được đánh giá thấp bằng cách sử dụng các biện pháp lịch sử.

  7. #17

    Quote Originally Posted by ;
    {quote} Thật thú vị khi bạn đề cập đến ATR mang lại giá trị cao giả tạo. Bạn có thể vui lòng giải thích thêm? Mỗi lần tôi đo lường mức độ biến động bằng cách sử dụng bất kỳ loại lịch sử nào, sự biến động hầu như luôn luôn được đánh giá thấp hầu hết thời gian hoặc đưa ra các giá trị thấp được đánh giá thấp. Có thể tôi đã hiểu nhầm những gì bạn nói, nhưng tôi rất tò mò muốn xem nơi bạn tìm thấy sự biến động thường được đánh giá thấp bằng cách sử dụng các biện pháp lịch sử.
    Xin chào Sis.yphus, vì ATR chủ yếu dựa trên mối quan hệ Cao và Thấp giữa các cây nến, lấy căn bậc hai thời gian của ATR đưa ra những kỳ vọng hàng ngày rất phi thực tế cho ngày hôm sau. Cá nhân tôi nghĩ rằng đó là một logic thiếu sót. Một thước đo dựa trên độ lệch sẽ cho thấy tiềm năng cho phạm vi trung bình hàng ngày của ngày hôm sau (ADR). Mặt khác, nếu bạn thử (MathLog (ĐóngĐóng [1]) * Sqrt (Thời gian)) * ZScore, ngày hôm sau ADR dường như đúng với số tiền. Nếu bạn sử dụng ZScore bằng 1 trong phép tính ở trên, mức cao và thấp của ngày hôm sau sẽ nằm trong ranh giới ZScore xấp xỉ% 68 của thời gian. Mà rất giống với phân phối bình thường. Để làm ví dụ, chúng ta hãy sử dụng biến động 5 phút để ước tính biến động của ngày hôm sau. Trước tiên, bạn sẽ lấy trung bình MathAbs (MathLog (ĐóngĐóng [1])) cho 288 thanh cuối cùng (1 ngày của các thanh 5 phút). Hãy để chúng tôi nói đây là V5 (Biến động 5 phút). Dự kiến ​​mức cao hàng ngày (ngày hôm sau) = DailyOpen * Exponent (V5 * MathSqrt (288) * Zscore) Dự kiến ​​hàng ngày (ngày hôm sau) = Mở hàng ngày * (2- (Exponent (V5 * MathSqrt (288) * Zscore)) I hy vọng nó rõ ràng ....

  8. #18
    Quote Originally Posted by ;
    {trích dẫn Cá nhân tôi nghĩ rằng đó là một logic thiếu sót. Một thước đo dựa trên độ lệch sẽ cho thấy tiềm năng cho phạm vi trung bình hàng ngày của ngày hôm sau (ADR). Mặt khác, nếu bạn thử (MathLog (ĐóngĐóng [1]) * Sqrt (Thời gian)) * ZScore, ngày hôm sau ADR dường như đúng với số tiền. Nếu bạn sử dụng ZScore của 1 trong phép tính ở trên, mức cao và thấp của ...
    Tôi hoàn toàn đồng ý logic là thiếu sót, như trường hợp của hầu hết các biến động lịch sử. Cảm ơn đã giải thích điều này. và tôi nguyền rủa bạn vì đã làm như vậy là tốt! Đi chơi với tính toán của bạn tối nay để xem liệu tôi có thể nhận được kết quả tương tự không. Nếu vậy, thì tôi thực sự sẽ nguyền rủa bạn bởi vì tôi có thể sẽ chơi với dữ liệu đó trong vài ngày
    Tôi có thể PM cho bạn để biết thêm về công thức nếu tôi nghĩ rằng tôi đang thiếu một cái gì đó. Chỉ tò mò, làm thế nào bạn đi về tính toán đó?

  9. #19
    Quote Originally Posted by ;
    } Cảm ơn đã giải thích điều này. và tôi nguyền rủa bạn vì đã làm như vậy là tốt! Đi chơi với tính toán của bạn tối nay để xem liệu tôi có thể nhận được kết quả tương tự không. Nếu vậy, thì tôi thực sự sẽ nguyền rủa bạn bởi vì tôi có thể sẽ chơi với dữ liệu đó trong vài ngày
    Tôi có thể PM cho bạn để biết thêm về công thức nếu tôi nghĩ rằng tôi đang thiếu một cái gì đó. Chỉ tò mò, làm thế nào bạn đi về tính toán đó?
    Bất cứ lúc nào, không có vấn đề gì cả Tôi chỉ áp dụng logic của mình cho nó, đó là tất cả .... Chúc may mắn ...

  10. #20

    Quote Originally Posted by ;
    {quote} ATR * Sqrt (Thời gian) là sai. Tôi đã thử nó từ lâu. ATR đưa ra các giá trị cao nhân tạo .. Cách chính xác là (MathLog (ĐóngĐóng [1]) * Sqrt (Thời gian)) * ZScore Kết quả rất thực tế khi hiển thị ranh giới sai lệch có thể .....
    Điểm Z được tính như thế nào? Cảm ơn

Quyền đăng bài

  • Bạn không thể đăng bài viết mới
  • Bạn không thể đăng trả lời
  • Bạn không thể đăng tệp đính kèm
  • Bạn không thể chỉnh sửa bài đăng của bạn
  •  
Chính sách Cookie
Chính sách Cookie: Website forexibroker sử dụng cookies và khi tiếp tục sử dụng website bạn chấp thuận với điều này. Để có thêm thông tin, vui lòng đọc 'Thông tin Cookie'.